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Executive Summary
In the past five years, SpaceX has revolutionized the aerospace industry by introducing a

new rocket that can propulsively land. At the heart of these rockets, and virtually all orbital and
suborbital spacecraft is thrust vector control (TVC). TVC is where the engine of the rocket is
moved using a gimbal to vector its direction and create torque forces to keep a rocket on its
desired trajectory. The purpose of this project was to create a model rocket with a flight
computer, develop a control algorithm for the TVC system, and program a simulation to model
the flight of the thrust vector controlled rocket.

The model rocket was designed using CAD software and made using a 3D printer, and is
capable of vectoring the rocket motor 5 degrees in any direction. The control system we decided
to use is a PID, or proportional-integral-derivative controller. We chose this due to its simplicity,
effectiveness, and ability to tune to any rocket. The flight computer we designed is able to run
this PID algorithm, along with logging flight data and controlling the engine mount.

However, we needed a method to tune this PID controller. In order to do this, we
developed a simulation in MATLAB Simulink so that we could find the optimal PID values for
our real flight. The simulation allowed us to plug in variables such as the mass of the rocket and
the amount of wind and receive a flight trajectory of the rocket.

Once both the real-life model and the simulation were finished, we did an actual test
flight of the rocket. Unfortunately, the rocket quickly flipped out of control, so the flight was
unsuccessful. This unsuccessful flight was caused due to a misalignment in the TVC mount that
caused the rocket to immediately go off of its straight trajectory. We hope to fly again soon with
an improved real-world model and simulation to back it up.

Introduction
Currently, there are over 10,000 companies in space technology development with a

combined value of over $4 trillion [5] dedicated to advancing technologies in navigation,
tourism, national security, communication, and outer space research. This expansive growth
prompts the need for new suborbital and orbital-class vehicles to transport these technologies
into outer space. Although these vehicles, the majority being rockets, present multiple
challenges, one of the biggest obstacles in developing a navigation and control system to guide
them.

A majority of these spacecraft use a technique called thrust vector control (Figure 1). By
angling, or vectoring, the direction of the thrusting component, the rocket has control over
position and orientation, even in a non-atmospheric environment. Engineers have designed and
implemented gimbals into the rocket engines to allow for this technique across a variety of
different rockets, but the software to control these gimbals and the rockets become very
complicated because of the high speeds, large masses, and precision required from spacecraft.



Furthermore, methods to tune these control algorithms also become very complex due to the high
cost and a large number of variables involved in a rocket flight. Although a majority of rockets
use the same technique as TVC for active control, the control system design and tuning present
many challenges.

Figure 1. By vectoring the thrust, the rocket’s orientation is rotated about the vehicle’s center of mass. This method can
be used to control the orientation and position of a model rocket.

The purpose of this research and engineering project was to design a versatile control
system that is compatible throughout different dynamics of different rockets and to create a
simulation to tune this control system and predict flight dynamics of different rockets.
Implementation of this robust and dynamic control system and simulation offers a simpler way
for the growing space industry to solve one of the most challenging problems of guidance,
navigation, and control. In this project, a control algorithm, orientation scheme, and simulation
were developed and tested in the form of a model rocket with a TVC system and control system
implemented.



Control Theory
The control system that we decided to use and tailor to rocket guidance, navigation, and

control, or GNC, was the very widely used Proportional-Integral-Derivative (PID) controller.
This is a feedback controller that regulated steam engines during the industrial revolution,
improved the yield from windmills and industrial processes worldwide, and lies at the heart of
autopilots used in commercial airplanes. This control algorithm allows for a simple integration
and tuning process for all rockets of various sizes and purposes by adjusting three values. The
PID controller is defined as
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Where u(t) is the output, Kp, Ki, and Kd are the three gains, e(t) is the error value and the
input to the controller, and is the change in time. There are three terms to this equation: the∆𝑡
proportional, integral, and derivative of the error value , which are scaled using the𝑒(𝑡)
adjustable gains Kp, Ki, and Kd. The proportional, integral, and derivative components allow for
control over oscillations, overshoot, and small errors. This simplicity allows for use on
lower-powered flight controllers, but the three components work together to produce a very
robust, efficient, and versatile control system.

On a rocket, this method can be easily integrated. We can have three PID controllers, one
for each axis to control orientation. The error, which is inputted into the controller, is equal to the
setpoint subtracted from the current orientation. The setpoint is adjustable based on the desired
angle. After performing the proportional, integral, and derivative components, we can then
command these angles to the gimbal, or thrust vector control mount (Figure 2).

Figure 2. PID Controller for a rocket.



Methods

Real-World Model
To validate that the control system and simulation worked properly, we designed a model

rocket and a TVC gimbal in computer-aided-design, CAD, and 3D printed components to
replicate a real-life rocket.

The rocket itself was printed in PLA and supported by four carbon fiber rods. Parachutes
that were stored in the upper body were deployed using a small pyrotechnic charge ignited by a
load driver aboard the flight computer.

The thrust vector control mount was a two-axis (Figure 4) gimbal that was designed to
vector the rocket motor using two servo motors that were controlled by the flight computer. The
gear ratio of the motors and the mount was 2:1, which allowed for more accuracy and less error
within the mount, and the mount had a range of +/- 5 degrees in both axes.

Figure 3. The model rocket design in CAD



Figure 4. The thrust vector control gimbal

Flight Computer
To control the servo motors, calculate orientation, deploy recovery parachutes, log data,

and execute the control algorithm, we designed and fabricated a custom flight computer (Figure
5). By collecting and analyzing sensor data, the flight computer was designed to control all
aspects of our model.

Figure 5. The flight computer in the design phase



Flight Software Design

The flight software was written in C++ and controlled all the components of the flight computer
and control system. The flight computer ran a finite-state automation function to control
parachute deployment and data logging tasks. To calculate the orientation of the craft using the
angular rate measurements from the inertial-measurement-unit, or IMU, the flight computer used
quaternions and a linear/1D Kalman Filter to estimate the orientation of the rocket.

Linear Kalman Filter
In our model, a linear Kalman filter is used to filter noise from sensor data [7]. A Kalman

filter calculates an estimate of unknown variables within measurements caused by external
factors. Since velocity and position are calculated by integrating and double-integrating
acceleration respectively, even a small amount of noise will cause significant drift in the
measurements.

We define the Kalman Gain, which is
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Where is the process variance, which increases the accuracy based on how much the𝑞
measurement moves. We can then set the previous estimate, , to the current estimate𝑋

𝑡−1

(5)𝑋
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= 𝑋
𝑡

Quaternions
The simple integration of the angular rates provided by the IMU to Euler angles results in

gimbal lock, where two axes align and differentiation between the two axes is not possible.
Quaternions and quaternion algebra, which were invented by Sir William Rowan Hamilton, were
used in this project to solve this issue and to allow for 3D rotations. Quaternions represent
orientation in four dimensions in 3D space. Since the IMU outputs the angular rate of x, y, and z
in so we can refer to those as𝑟𝑎𝑑/𝑠
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We can also refer to the base world reference frame, and since the rocket points upwards at
launch, we can introduce 𝑄
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Next, we can calculate the quaternion derivative that describes the rate of change of orientation
relative to the earth.
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Where:

● is the quaternion derivative at time step
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● is the Hamilton Product operator (Appendix A)⊗

We can integrate the quaternion derivative to determine the orientation at with𝑡
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And is the time step. We now normalize the quaternion by first calculating the norm, and then∆𝑡
dividing the orientation by the norm
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Where are the individual elements of quaternion . This quaternion can be converted𝑄
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back to Euler angles without the risk of gimbal lock by equations 11-13.
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Where is the roll of the craft, is the yaw of the craft, and is the pitch of the craft expressedα β θ
in radians (Figure 6).

Figure 6. Rocket Rotations

To reduce unnecessary complexity, the real-world model did not include roll control, which is
not controllable by the TVC mount. To account for any roll changes during the flight, andθ,  β
must be decoupled from usingα

(14)θ = 𝑐𝑜𝑠(α) • θ − 𝑠𝑖𝑛(α) • β
(15)β = 𝑐𝑜𝑠(α) • β + 𝑠𝑖𝑛(α) • θ

and can then be inputted into the two PID controllers for both the pitch and yaw axis.θ β

Quaternions are also extremely useful in rotating different orientations. The
accelerometer unit on the IMU provides linear acceleration in the vehicle reference frame. This
reference frame is not compatible with velocity and position measurements, as well as
accelerometer measurements used to detect launch, burnout, and apogee for the finite state



automation function. By finding the Hamilton product of the orientation quaternions and the
acceleration readings, we can convert the measurements to a world reference frame. We can refer
to the accelerometer readings as
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Then, we can find the world reference frame orientation by finding the first Hamilton product of
the orientation quaternion and .𝑎

𝑡
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accelerations in the world frame respectively.

In conclusion, the flight computer:
1. Reads raw data from sensors.
2. Filters the data using the linear Kalman filter.
3. Converts the raw gyro and time parameters into Euler angles using quaternions.
4. Inputs the Euler angles into the PID controller and commands the output of the PID

controller to the servo motors of the TVC mount.
5. Rotates the filtered acceleration readings to the world frame using quaternion operators

and uses these values for the state automation function.

Simulation
To tune the PID controller and verify that our real-life system would work properly, we

have created a simulation of the rocket in MATLAB Simulink. We have worked to account for
many real-life variables, including:

● Noise from sensor data
● Latency from flight computer and servo motor
● Wind disturbances

The most fundamental part of the simulation is the 3DOF block, as it utilizes all of the
equations in three degrees of freedom motion to simulate an object in 2-dimensional space. This
allows us to input x and z direction vector forces and torque, then receive x and z position and
velocity, along with an angular position and velocity. real-life this to work properly, we needed to
know the mass moment of inertia (MMOI) and mass of our actual rocket. To find the MMOI, we
used the bifilar pendulum method, which involves hanging the rocket by two parallel strings
equidistant from the center of mass and measuring the period of the swing rotating around the
center of mass. The equation to find the MMOI is:



(19)𝑀𝑀𝑂𝐼 = 𝑚𝑔𝑝2𝑟2

4π2𝐿
Where is the mass moment of inertia, is mass, is the gravitational constant, is the𝑀𝑀𝑂𝐼 𝑚 𝑔 𝑝
period for one complete swing of the rocket, is the distance from the center of mass and where𝑟
the string is attached, and is the length of the strings.𝐿

Engine Force and Gravity
The two most critical forces being applied to a rocket are gravity and the engine force.

The 3DOF block already has a feature for applying gravity, which made the implementation
extremely simple. As for the engine force, the data for the D12-0 engine we are using is already
provided by Estes (Appendix C), so we were able to implement that data into the simulation.
However, since we are using a TVC mount, we didn’t just want the engine force to be applied in
the z-direction, as it needed to be vectored based on the TVC mount’s position. To solve this, we
split the force into x and z vectors using the following two equations:

𝐹
𝑚𝑜𝑡𝑜𝑟(𝑧)

= 𝐹
𝑚𝑜𝑡𝑜𝑟

× 𝑐𝑜𝑠(σ + 𝑒)

(20)
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In these equations, Fmotor(x) and Fmotor(z) are the x and z direction vector forces respectively, Fmotor is
the total engine force, and is the angle the TVC mount. The motor mount misalignment,σ
represented by is to 1 degree to account for any real-life misalignments that may occur. We𝑒
also use this equation

(22)𝑇
𝑚𝑜𝑡𝑜𝑟

= 𝐹
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To calculate the torque produced by the TVC mount, where is the torque produced by the𝑇

𝑚𝑜𝑡𝑜𝑟 

engine and is the distance from the center of mass to the end of the rocket motor. The way the𝑎
TVC mount position is calculated will be explained later in the simulation overview.

Noise Addition and PID Calculations
Since the accelerometer used on the real rocket does not yield perfect results, we wanted

to simulate some of that noise. A random number generator generating values of +/- 0.1 degrees
was added to the actual angular position of the rocket in degrees.

To calculate the PID values, we use the PID equation. To calculate the output, this
equation must be the same in both the real-world model and the simulation because we want the

, , and gains found in our simulation to be used in the real-life model with optimal𝐾
𝑝

𝐾
𝑖

𝐾
𝑑

results.

Real-Life Limitations



Next, we need to account for some of the real-life limitations of the rocket, such as flight
computer delay, servo speed limitations, and servo position limitations. The TVC control mount
on the real rocket can only move the engine ±5 degrees, so this is accounted for by saturating the
output to have a maximum of 5 degrees and a minimum of 5 degrees. In addition, the TVC𝑢(𝑡)
servos have a limited angular rate. To measure the speed of the servo, we recorded a slow-motion
video of the servo moving as fast as it can and calculated the maximum rotational speed to be
258 degrees per second. We used this value as the maximum rate at which the PID output could
change. Finally, flight computer latency needs to be accounted for. Although the flight computer
latency is estimated to be only 7.5 ms, we decided to increase it to 50 ms to have the simulation
account for more imperfection. After all three of these limitations are applied to , the final𝑢(𝑡)
resulting angle will be the position of the TVC mount, .σ

Wind Forces
To account for wind, we applied another torque in the form of a sine wave. Since we

don’t have any data on how much torque is applied for a given velocity of wind, we
experimented with the amount of wind torque and set it to be as high as the rocket could handle.
After some experimentation, we found that the most wind the rocket could handle was a sine
wave going between 0 Nm and 0.1 Nm.

Aerodynamic Forces
The two most important aerodynamic forces that act on the rocket are the drag and lift

force [4]. The drag force acts opposite to the direction the rocket is pointing towards, and the lift
force acts perpendicular to the rocket but is applied from the center of pressure [4]. We were able
to implement these forces with the help of a software called OpenRocket. OpenRocket is a
software that allows for the simulation of model rocket launches and lets the user customize the
rocket. We used this software and created our real-life rocket, ensuring that parameters such as
the mass, center of mass, MMOI, and shape of the rocket were all the same. Then, we exported a
large amount of data from OpenRocket for various amounts of wind, including the angle of
attack, total velocity, drag force, lift force coefficient, and center of pressure position. The angle
of attack is the angle at which the rocket is relative to the air flowing past it as opposed to the
ground [10]. All of this data was then implemented into the simulation. However, we only
received the lift force coefficient, but not the lift force. The equation to find the lift force is

𝐹
𝑙

= 1
2 × 𝑐

𝑙
× 𝑑

𝑎𝑖𝑟
× 𝑎

𝑟𝑒𝑓

(23)
Where is the lift force, is the lift force coefficient, is the density of air, and is the𝐹

𝑙
𝑐

𝑙
𝑑

𝑎𝑖𝑟
𝑎

𝑟𝑒𝑓

reference area of the rocket [6]. The density of air is 1.225 kg/m3 at sea level, and the reference
area is 5.6745 10-3 m2 according to OpenRocket. To find the torque produced by the lift force,•
we multiply the lift force by the distance between the center of pressure and center of gravity,
which varies based on the angle of attack of the rocket.



Tuning for Optimal Results
After each component of the simulation was completed, the next step was to tune the PID

values Kp, Ki, and Kd. To begin tuning, we set Ki to 0 since its effect was not determined to be
significant, and began experimenting with and values. We knew that low gains would𝐾

𝑝
𝐾

𝑑
𝐾

𝑝

result in insufficient correction, and high values would result in significant overshooting.𝐾
𝑝

𝐾
𝑑

gains that were too low would result in overshooting even with low values, and values too𝐾
𝑝

𝐾
𝑑

high would result in extremely rapid oscillations. When we eventually found a and value𝐾
𝑝

𝐾
𝑑

combination that resulted in a successful flight, we began fine-tuning these values by moving
each of them up and down by small increments individually and seeing if the flight had less or
more error. Once we found the and values with the smallest amount of error, we added𝐾

𝑝
𝐾

𝑑

back the Ki term and increased it gradually until it hindered the results compared to lower values.

Results and Discussion

Simulation

Once tuning was complete, we got PID values of Kp=0.5, Ki=1.4, and Kd=0.08 inside of
the simulation. As seen in Figure 7, the rocket coasts up to an altitude of about 18 meters before
falling back down to the ground. Figure 8 shows the angle of the rocket as a function of time,
which is much more important than the altitude. From 0-1.6 seconds, the TVC mount can handle
the wind and prevents the rocket from exceeding an angle of 10 degrees, after this, the rocket
motor burns out and is uncontrolled.



Figure 7. Shows the altitude of the simulated rocket as a function of time.

Figure 8. Shows the rocket’s angle relative vertical in degrees as a function of time.



Unfortunately, the simulation was less advanced at the time that we flew the real rocket,
so the PID values were instead Kp=0.3, Ki=0.3, and Kd=0.05. These PID gains were then inputted
into the real-world model’s flight software and flown on the Estes D12-0 rocket motor
(Appendix C). The rocket had a mass of 0.605kg and a mass-moment-of-inertia of 0.01428
kgm2. For simplicity purposes, the software had a constant setpoint of zero on both axes,
meaning that the rocket would try to stay fully upright.

Real-World Model
The real-world model as discussed on page 5 was flown once using the parameters

calculated from the simulation. The rocket was flown on an Estes D12-0 (Appendix C).
Figure 9 shows the estimated orientation of the rocket after liftoff was detected. The

rocket almost immediately pitched over after liftoff. At around 0.372 seconds, data logging
stopped and the PID loop was terminated because the flight software had an integrated abort
system that triggered when the pitch or yaw surpassed +/- 30 degrees. This abort sequence saved
all the data into the SD card, detached electrical connections to the servo motors, terminated all
functions and deployed the parachutes. This sequence ensured that all relevant data would be
saved and that damage to the rocket and avionics would be minimized when the rocket’s
orientation surpassed a point of no return.

Figure 9. Orientation of the rocket in degrees as a function of time after liftoff was detected by the finite state automation
function. Data was cut off at about 0.372 seconds by the abort sequence.

The large undesired orientation change was caused by several issues within the physical
model. When assembling the thrust vector control gimbal, there were misalignments within the



two axes. So at liftoff, the rocket immediately pitched over, as seen in Figure 9. As the PID
controller tried to correct this error, the misalignment caused larger errors to occur. As can be
seen in Appendix B and Figure 10, the PID controller tried to output a value much greater than 5
degrees, and subsequently kept outputting values greater than 5 degrees. The TVC mount had an
actuator limit of +/- 5 degrees, which means it was not accurately reflecting the command output
of the PID loop.



Figure 10. Error inputted to the PID controller versus output as a function of time detected after liftoff.



Figure 11. Different phases of the rocket flight are depicted in one photo. By the second and third freeze frames,
the abort sequence had already fired and the rocket was uncontrolled.

After the abort was called, the rocket flew completely out of control and collided with the
ground. Although the rocket’s outer body frame was shattered and the TVC mount was broken,
the flight avionics, data, and servo motors were still intact. Figure 12 depicts other parameters
measured during the flight, where X, Y, and Z are the roll, yaw, and pitch axes respectively. All
measurements were plotted as a function of time detected after liftoff.

Figure 12 also depicts the raw versus filtered linear acceleration readings in the vehicle
reference frame. The raw readings are passed into separate Kalman filters, which smooth the
data.



Figure 12. Raw and filtered accelerometer readings. Once again, the process variance in the Z-axis needs to
increase since the filtered values are not accurately accounted for the large changes in acceleration.



Figure 13. X, Y, Z (roll, yaw, pitch) readings from the gyroscope. These values along with time parameters were converted
to Euler angles using quaternions.

Model and Simulation Verification
Although the flight did not take the desirable flight path due to errors in the physical

model, we cross-referenced data from the real-world model’s flight to the simulation that was run
of that model. Figure 15 depicts the simulated flight orientation versus the actual flights in the Y
and X axes (yaw and pitch respectively).



Figure 14. Y-axis (yaw) orientation of the simulated flight of the real-world model and the actual flight.

Figure 15. Z-axis (pitch) orientation of the simulation versus the actual flight. The real-world model’s orientation values
have drifted up about 4 degrees due to the integration of small noise values, causing an offset.



Conclusion
The results of the simulation and model indicate that a PID controller-based navigation

system would be a viable option for rockets to use as a control system. Using an accurate
simulation that matched real-world data (Figure 15), the three tuning parameters of the PID
system could be calculated for an optimal flight. Furthermore, a quaternion-based orientation
system was developed to solve gimbal lock and 3D space orientation problems, along with an
implementation of a Kalman filter to reduce the effects of noise and increase the robustness of
the overall system.

Although the real-world model did not fly as expected, the analysis showed that this was
caused by misalignment of the parts and by design errors. We hope to fly another version of the
real-world model soon after conducting a few improvements to the model and further improving
the simulation for more accuracy.

Simulation Improvements and Future Implementations

The simulation worked very well at predicting the flight path and properties of the
real-world model but also has some future implementations and improvements such as:

● Implementing the actual formulas for the fluid dynamic calculations
● Adding a visualization of the flight using animations.

Real-World Model Improvements and Future Implementations

Software
● Faster loop speeds by optimizing the available SRAM onboard the flight computer and

creating more efficient functions.
● Add anti-windup to the integral term by clamping the output to the actuator limit of the

TVC mount.
● Experiment with different methods of control such as model-predictive control or a linear

quadratic regulator.
● Potentially implementing roll control with a reaction wheel, or adding position control.
● A dynamic setpoint that pitches the rocket in a certain direction.

Hardware
● Adding a self-alignment system in the form of a hex driver that inserts into the side.
● Moving avionics upward will lift the center of mass, giving the TVC more torque

authority by increasing the lever arm.

Finally, the fact that this project is not the end cannot be overemphasized. The real-world
model, control system, simulation, and flight software can have many new improvements, and
with more research and development, we hope to see a larger growth within the space industry.



Appendix A

List of symbols, operators, and abbreviations

Symbol Description

TVC Thrust-vector-control

PID-Controller Proportional-Integral-Derivative Controller

GNC Guidance, navigation, and control.

IMU Inertial-measurement-unit

3DOF Three degrees-of-freedom

MMOI Mass moment of inertia

CAD Computer-Aided Design

PLA Polylactic Acid

𝑎 Distance from end of engine and center of mass

A World reference frame linear acceleration

𝑎
𝑡

Linear acceleration

𝑐
𝑙

Coefficient of lift force

𝑎
𝑟𝑒𝑓

Reference area of the rocket

𝑑
𝑎𝑖𝑟

Density of air

𝑒(𝑡) Error

e Motor mount misalignment

𝐹
𝑙

Lift force

𝐹
𝑚𝑜𝑡𝑜𝑟

The total force from the rocket motor

𝐹
𝑚𝑜𝑡𝑜𝑟(𝑥)

x-direction vector of the engine force

𝐹
𝑚𝑜𝑡𝑜𝑟(𝑧)

z-direction vector of the engine force

𝐺
𝑛

Kalman gain

𝑔 Gravitational constant in m/s2



𝐾
𝑑

Derivative gain

𝐾
𝑝

Proportional gain

𝐾
𝑖

Integral gain

𝐿 Length of string

𝑚 Rocket mass

𝑝 Period of the rocket swing in the two string pendulum

𝑝
𝑛

Estimate uncertainty

𝑄 Quaternion orientation

𝑄
𝑖𝑛𝑖𝑡

Base world reference frame quaternion

𝑄
𝑡

Quaternion orientation at time step 𝑡

𝑞 Process Variance

𝑟 Distance from center of mass and string

𝑟
𝑛

Measurement uncertainty

𝑢(𝑡) PID controller output

𝑋
𝑡

Kalman filter estimate

𝑍
𝑛

Measurement input

α Roll

β Yaw

θ Pitch

σ The angular position of the TVC gimbal

∆𝑡 Change in time

ω
𝑡

Angular rate



The Hamilton product operator is the noncommutative multiplication of two quaternions.⊗
For quaternions and , is defined as𝑎 𝑏 𝑎 ⊗ 𝑏 = 𝑖
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Appendix B

Flight 1 PID controller outputs
Time (sec) Yaw Axis Output Pitch Axis Output

0 2.001 0.232

0 2.386 0.523

0.012112 2.704 0.468

0.021728 2.922 0.419

0.030656 3.009 0.579

0.043136 3.286 0.99

0.05272 3.514 1.26

0.065064 3.785 1.649

0.073936 4.004 1.929

0.086728 4.427 2.434

0.095664 4.713 2.699

0.107768 5.018 3.127

0.11736 5.298 3.536

0.12632 5.497 3.856

0.138552 5.859 4.319

0.148176 6.127 4.579

0.16052 6.557 4.911

0.169408 6.826 5.123

0.182416 7.267 5.367

0.191368 7.514 5.498

0.203632 7.911 5.666

0.213232 8.203 5.742

0.222208 8.457 5.811

0.23432 8.861 5.884

0.243952 9.104 5.976

0.256144 9.509 6.013

0.265056 9.769 6.022

0.277752 10.199 6.059

0.286728 10.496 6.023

0.298672 10.879 6.068

0.3076 11.168 6.033



0.32048 11.658 6.019

0.329456 11.983 5.948

0.33832 12.285 5.929

0.35048 12.799 5.861

0.36008 13.181 5.761

0.372304 13.723 5.642



Appendix C

Estes D12-0 Specifications
Flight 1 used the Estes D12-0 rocket motor.

Length 7cm

Diameter 24mm

Estimated Weight 40.5g

Total Impulse 20.00 N-sec

Estimated Max Lift Weight 32.90 N

Burn Duration 1.60 sec

Initial mass 40.4 g

Propellant Mass 23.8 g

Table C. Technical Specifications of the D12-0 provided by the manufacturer

Figure C. Thrust curve of the D12-0 rocket motor provided by the manufacturer
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